25 research outputs found

    A Light on Physiological Sensors for Efficient Driver Drowsiness Detection System

    Get PDF
    International audienceThe significant advance in bio-sensor technologies hold promise to monitor human physiologicalsignals in real time. In the context of public safety, such technology knows notable research investigations toobjectively detect early stage of driver drowsiness that impairs driver performance under various conditions.Seeking for low-cost, compact yet reliable sensing technology that can provide a solution to drowsy stateproblem is challenging. While some enduring solutions have been available as prototypes for a while, many ofthese technologies are now in the development, validation testing, or even commercialization stages. Thecontribution of this paper is to assess current progress in the development of bio-sensors based driver drowsinessdetection technologies and study their fundamental specifications to achieve accuracy requirements. Existingmarket and research products are then ranked following the discussed specifications. The finding of this work isto provide a methodology to facilitate making the appropriate hardware choice to implement efficient yet lowcostdrowsiness detection system using existing market physiological based sensors

    Brief announcement: Game theoretical approach for energy-delay balancing in distributed duty-cycled MAC protocols of wireless networks

    Get PDF
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy constrained distributed wireless networks is a conflicting multi-objective optimization problem. This paper investigates this trade-off from a game-theoretic perspective, where the two optimization objectives are considered as virtual game players that attempt to optimize their utility values. The cost model of each player is mapped through a generalized optimization framework onto protocol specific MAC parameters. A cooperative game is then defined, in which the Nash Bargaining solution assures the balance between energy consumption and e2e packet delay. For illustration, this formulation is applied to three state-of-the-art wireless sensor network MAC protocols; X-MAC, DMAC, and LMAC as representatives of preamble sampling, slotted contention-based, and frame-based MAC categories, respectively. The paper shows the effectiveness of such framework in optimizing protocol parameters for achieving a fair energy-delay performance trade-off, under the application requirements in terms of initial energy budget and maximum e2e packet delay. The proposed framework is scalable with the increase in the number of nodes, as the players represent the optimization metrics instead of nodes.Postprint (author’s final draft

    Calibrating low-cost air quality sensors using multiple arrays of sensors

    Get PDF
    The remarkable advances in sensing and communication technologies have introduced increasingly low-cost, smart and portable sensors that can be embedded everywhere and play an important role in environmental sensing applications such as air quality monitoring. These user-friendly wireless sensor platforms enable assessment of human exposure to air pollution through observations at high spatial resolution in near-realtime, thus providing new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. However, data quality from such platforms is a concern since sensing hardware of such devices is generally characterized by a reduced accuracy, precision, and reliability. Achieving good data quality and maintaining error free measurements during the whole system lifetime is challenging. Over time, sensors become subject to several sources of unknown and uncontrollable faulty data which comprise the accuracy of the measurements and yield observations far from the expected values. This paper investigates calibration of low-cost air quality sensors in a real sensor network deployment. The approach leverages on the availability of sensor arrays in a wireless node to estimate parameters that minimize the calibration error using fusion of data from multiple sensors. The obtained results were encouraging and show the effectiveness of the approach compared to a single sensor calibration.Peer ReviewedPostprint (author's final draft

    Fast distributed multi-hop relative time synchronization protocol and estimators for wireless sensor networks

    Get PDF
    The challenging problem of time synchronization in wireless sensor networks is considered in this paper, where a new distributed protocol is proposed for both local and multi-hop synchronization. The receiver-to-receiver paradigm is used, which has the advantage of reducing the time-critical-path and thus improving the accuracy compared to common sender-to-receiver protocols. The protocol is fully distributed and does not rely on any fixed reference. The role of the reference is divided amongst all nodes, while timestamp exchange is integrated with synchronization signals (beacons). This enables fast acquisition of timestamps that are used as samples to estimate relative synchronization parameters. An appropriate model is used to derive maximum likelihood estimators (MLE) and the Cramer-Rao lower bounds (CRLB) for both the offset-only, and the joint offset/skew estimation. The model permits to directly estimating relative parameters without using or referring to a reference' clock. The proposed protocol is extended to multi-hop environment, where local synchronization is performed proactively and the resulted estimates are transferred to the intermediate/end-point nodes on-demand, i.e. as soon as a multi-hop communication that needs synchronization is initiated. On-demand synchronization is targeted for multi-hop synchronization instead of the always-on global synchronization model, which avoids periodic and continuous propagation of synchronization signals beyond a single-hop. Extension of local MLE estimators is proposed to derive relative multi-hop estimators. The protocol is compared by simulation to some state-of-the-art protocols, and results show much faster convergence of the proposed protocol. The difference has been on the order of more than twice compared to CS-MNS, more than ten times compared to RBS, and more than twenty times compared to TPSN. Results also show scalability of the proposed protocol concerning the multi-hop synchronization. The error does not exceed few microseconds for as much as 10 hops in R4Syn, while in CS-MNS, and TPSN, it reaches few tens of microseconds. Implementation and tests of the protocol on real sensor motes confirm microsecond level precision even in multi-hop scenarios, and high stability (long lifetime) of the skew/offset model

    Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks

    Get PDF
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements

    Efficient QoS-aware heterogeneous architecture for energy-delay constrained connected objects

    No full text
    International audienc

    Survey on latency issues of asynchronous MAC protocols in delay-sensitive wireless sensor networks

    No full text
    Energy-efficiency is the main concern in most Wireless Sensor Network (WSN) applications. For this purpose, current WSN MAC (Medium Access Control) protocols use duty-cycling schemes, where they consciously switch a node's radio between active and sleep modes. However, a node needs to be aware of (or at least use some mechanism to meet) its neighbors' sleep/active schedules, since messages cannot be exchanged unless both the transmitter and the receiver are awake. Asynchronous duty-cycling schemes have the advantage over synchronous ones to eliminating the need of clock synchronization, and to be conceptually distributed and more dynamic. However, the communicating nodes are prone to spend more time waiting for the active period of each other, which inevitably influences the one-hop delay, and consequently the cumulative end-to-end delay. This paper reviews current asynchronous WSN MAC protocols. Its main contribution is to study these protocols from the delay efficiency perspective, and to investigate on their latency. The asynchronous protocols are divided into six categories: static wake-up preamble, adaptive wake-up preamble, collaborative schedule setting, collisions resolution, receiver-initiated, and anticipation-based. Several state-of-the-art protocols are described following the proposed taxonomy, with comprehensive discussions and comparisons with respect to their latency

    FH-MAC: A Multi-Channel Hybrid MAC Protocol for Wireless Mesh Networks

    No full text
    In this article, the authors propose a new hybrid MAC protocol named H-MAC for wireless mesh networks. This protocol combines CSMA and TDMA schemes according to the contention level. In addition, it exploits channel diversity and provides a medium access control method that ensures the QoS requirements. Using ns-2 simulator, we have implemented and compared H-MAC with other MAC protocol used in Wireless Network. The results showed that H-MAC performs better compared to Z-MAC

    Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: A review and taxonomy

    No full text
    Duty-cycling allows obtaining significant energy saving compared to full duty cycle (sleepless) random access MAC protocols. However, it may result in significant latency. In slotted duty-cycled medium access control (MAC) protocols, sensor nodes periodically and synchronously alternate their operations between active and sleep modes. The sleep mode allows a sensor node to completely turn off its radio and save energy. In order to transmit data from one node to another, both nodes must be in active mode. The synchronous feature makes the protocols more appropriate for delay-sensitive applications compared to asynchronous protocols. The latter involve additional delay for the sender to meet the receiver's active period, which is eliminated with synchronous approach where nodes sleep and wake up all together. Despite the possible increase of contention by grouping active periods, the delay due to packets retransmissions after collisions is less significant compared to the waiting time of asynchronous protocols. Furthermore, contention-based feature makes the protocol conceptually distributed and more dynamic compared to TDMA-based. This manuscript deals with timeliness issues of slotted contentionbased WSN MAC protocols. It provides a comprehensive review and taxonomy of state-of-the-art synchronous MAC protocols. The performance objective considered in the proposed taxonomy is the latency, in the context of energy-limited WSN, where energy is considered as a constraint for the MAC protocol that yields the need of duty-cycling the radio. The main contribution is to study and classify these protocols from the delay efficiency perspective. The protocols are divided into two main categories: static schedule and adaptive schedule. Adaptive schedule are split up into four subclasses: adaptive grouped schedule, adaptive repeated schedule, staggered schedule, and reservation schedule. Several state-of-the-art protocols are described following the proposed classification, with comprehensive discussions and comparisons with respect to their latency. © 2013 Elsevier Ltd. All rights reserved

    Explosives picked up at sea Notice to owners, masters, skippers and crew of trawlers, dredgers and other vessels involved in seabed operations

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:5375.55(102/MF) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore